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Data and Data Features

 Metrics and taxonomy of Data

 Features of Data

 Analysis of Data
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Data

In general, data and their values can be divided into:

Scalar values, such as temperature, age, etc.
Series of scalar values, such as time series
Vector and matrix values such as images
Composite data, i.e. data structures (records)
Temporal-spatial data, i.e. time-dependent spatial data series,
D={D (p,t )={d (p ) i}} with i = {1,2,3,..,t}, p=⟨x,y,..⟩

Data have dimensionality 𝕏N

The values of 𝕏 are a dimension from the discrete number set ℕ,
real number set ℝ, and the time scale 𝕋 or any categorical value
sets 𝕊 (or subsets thereof), e.g., 𝕏=ℝ × ℝ × ℕ.
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Data Reduction

The aim of data analysis is to reduce input data in terms of size
and dimensionality:

P(XN) : XN → Y M

|Y | < |X|,M < N

Materials science, metrology, and construction engineering uses:

Commonly metric input variables;
Often metric or categorical output variables (incl. Boolean
variables)
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Data Reduction

function isRaining(temp,sunrad,moisture) = {
  if (temp < 0)                    FALSE
  else if (temp > 40)              FALSE
  else if ((sunrad-moisture) > 30) FALSE
  else                             TRUE
}

Ex. 1. A R example from measurement technology with a data reduction function ℝ3

→ 𝔹
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Data classes

Numerical and Metric values
These are values that are countable and where you can
meaningfully define relations (such as smaller or larger), i.e. for all
real and integers.

Examples: temperature, length, density, pore size, elongation,
force, location, time

Categorical values
These are symbolic values for which either no (meaningful) order
relation exists or where at least no differences can be formed.

Examples: nationality, color names (red < yellow???), Damage
type, characteristic feature (anomaly?)
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m = 1
m = [1.0,1.5,2.5]
c = 'A'
c = ['A','B','A']
c = [TRUE,FALSE,TRUE]
c = factor(m,levels=[1,1.5,2,2.5],labels=['A','B','C','D'])

Ex. 2. R examples of numerical and categorical values and conversion (factorization)
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Scaling of numerical values

Interval scaled
For this type of attributes, only differences (addition or
subtraction) make sense. For example, the temperature measured
in °C or °F is interval scaled. If it is 20 °C on one day and 10 °C
on the following day, it makes sense to talk about a temperature
drop of 10 °C, but it does not make sense to say that it is twice as
cold as the day before (C(K)∼K, but F(K)/∼K!!).

Ratio scaled
Here you can calculate both differences and ratios between
values. For example, for age, one can say that someone who is 20
years old is twice as old as someone who is 10 years old, and 20
is > 10.
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Order relations

Nominal
The attribute values in the domain are unordered and therefore
only equality comparisons make sense. That is, we can only check
whether the value of the attribute is the same for two specific
instances or not. For example, gender is a nominal attribute.

Ordinal
The attribute values are ordered and thus equality comparisons (is
one value equal to another?) and relational comparisons (is one
value smaller or larger than another?) are allowed, although it
may not be possible to quantify the difference between the
values!
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Data Aggregations

1. Vectors (columns, one dimensional)
2. Lists (field record, one dimensional)
3. Matrices (two dimensional)
4. Arrays (multi dimensional)
5. Tables (data frames organized in rows and columns)

v = c(4)            v = [1.0,1.5,2.5]
v[1] = 1.2
l = list(a=1,b=2)   l = {a=1,b=2}   l={1.0,1.5,2.5}
l$a = 9
m = matrix(0,nrow=2,ncol=3)
m = [1,2,3;4,5,6]
a = array(0,dim=[3,2,4])
df = data.frame(a={1,2,3},b={3,4,5})
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Data classes (longitudinal)

Sensor and measurement data variables (both categorical and
metric) can be further distinguished in:

Static
The variable s is not variable in time or is to be regarded as
stationary (immutable) in a significant time interval t ∈ [t 0, t 1].

Dynamic
The variable s (t ) is time-dependent and forms a data series (or
time vector) s (t )={s 0,s 1,..s t} in the case of discrete acquisition,
i.e., we are talking about longitudinal data.


A digitized sensor signal is always discrete in time, but the
physical variable that the sensor measures is continuous in
time (note the sampling theorem)
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Data

Data sets as matrices

Data can be represented in matrix form as matrix D (analogy to
table form) [1]:
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The vector X is the set of all variables X i and represent the
columns of the matrix D:

→X = (X1,X2, . . ,Xd)

Each row x j is a record of the variable set X={X i|i=1,d} with
values x and represent an individual example, instance,
experiment, entitie, object, and feature vector as a d-digit tuple,
depending on the application and objective:

→d j = →xj = (xj,1,xj,2, . . ,xj,d)

df = data.frame(
  X1={'x1,1','x1,2','...'},
  X2={'x2,1','x2,2','...'},
  X3={'x3,1','x3,2','...'}
)
print(df)
      X1      X2     X3 == X
1  "x1,1" "x2,1" "x3,1"
2  "x1,2" "x2,2" "x3,2"
3  "..."  "..."  "..."
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Input and Output Variables

The variable set is composed of input and output variables:
X xy=X ∩ Y
Sensors are commonly input variables X
Statements are output variables Y, i.e. results that can be derived
from the input variables (by a function F ):

→Xxy = (X1,X2, . . ,Xu,Y1,Y2, . . ,Yv)

→X = (X1,X2, . . ,Xu)

→Y = (Y1,Y2, . . ,Yv)

→d j = (xj,1,xj,2, . . ,xj,u, yj,1, yj,2, . . , yj,v)

F( →X) : →X → →Y ,

with u+v=d.
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[1]

Example of a data matrix

Botanical data set with geometric (numerical) properties of a plant
and categorical classification:
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[www.precifast.de/elastizitaetsmodul-e-modul]

Computed Strain-stress diagram Measurement data from strain test 
 

Strain [mm] Force [kN]
0 0
0.1 0.2
0.2 0.7
0.3 1.5
0.4 1.7
0.5 1.9
0.6 2.0
0.7 0.2
0.8 -0.5

Measurement data set
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tt = data.frame(
  Strain = [0.0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8],
  Force  = [0.0,0.2,0.7,1.5,1.7,1.9,2.0,0.2,-0.5]
)

Ex. 4. Measure data stored in a R data.frame
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Attributes

The measured variables X 1 to X 4 are metric data variables, the
variable X 5=y is a categorical variable!

The measured variables X 1 to X 4 (i.e. sensors) are called
attributes because they are properties and descriptive variables
of the target variable y.

High-dimensional Data

Images I=I(x,y[,z]) are commonly two- or three-dimensional
spatial data, organised in rows and columns (and levels)
Spatiotemporal data T=T(x,y[,z],t ) is commonly three- or four
dimensional and organised in rows, columns (levels), and discrete
time points t.
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Sensors

 Which sensors and measurement data do you know:
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Sensor

Measurement

Physical quantities such as temperature, strain, stress, time,
absorption
Merged survey variables (e.g. ensemble mean values, outliers,
..)

When measuring with sensors, a distinction is made between:

Single or single measurements (single shot)
Repeated measurements of the same physical quantity
(averaging..)
Series of measured values, especially time-resolved data
series: 
D = {d 1,d 2,..,d n}, where commonly Δt(d i,d i+1) is constant
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Sensor

Socio-technical systems, surveys

Survey variables (answers to questions) are sensors of
individual people
Merged survey variables (e.g. ensemble mean values) are
sensors of groups of people

Generally available data

Social networks and social media
Databases of authorities, etc.
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Sensor model

A sensor is a transducer (indicator for a property that is not
directly measurable)

A sensor therefore generally maps a physical quantity x to
another quantity y:

S(x) : x → y,K : correct(x → y)

There is usually a calibration function K(f,x, y)

Examples are:

Pressure → Voltage, Radiation → current, etc.
Social networking → Numerical radius value, votes → Politics,
i.e., Assignment of numbers to objects or events
according to established rules
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Sensor data

Sensors S are data sources d of physical, sociological or other
natural variables x that cannot be detected directly

The data values (numeric) will be in a definable interval

Knowledge of the value interval is important for later data
processing, analysis, and machine learning!
Categorical values are also defined by a set

S(x) : x → d

d ∈ [a, b] ⇒ {v0, v1, . . , vi}
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Measurement and sensory systems

 The origin of data for analysis and machine learning!

 A sensor rarely comes alone.
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Measurement methods

A distinction is made between two different measurement methods:

Passive measuring method (P)
The sensory values are the result of an intrinsic property (e.g.,
density) or already existing external variables (temperature). The
stimulus of the measurement is the component, the person, the
environment.

Active measurement methods (A)
There is an active stimulus whose response signal is detected by
the sensor. An example is the ultrasonic measurement method
with guided waves. The sensor signal is always dependent on the
stimulus. In sociology, for example, the stimulus is a catalog of
questions in a survey, the answers are the sensor variables.
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 Acoustic Emission measuring technologies can belong to both
classes,
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Acoustic Emission measuring technologies can belong to both
classes,

Guided Ultrasonic Waves belong to class A, and
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Acoustic Emission measuring technologies can belong to both
classes,

Guided Ultrasonic Waves belong to class A, and

X-ray imaging belongs commonly only to class P.
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Signal Features
1. Statistical Features

2. Spatial Features (Images, geometric features)

3. Frequency and spectral Features /time and space)

4. Differences to reference signals

5. Transformed Signals
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Statistical Features

Assumption: Data series

But any image can be transformed into a pixel data series, too!
Any column of a data table is a data series (but independent
values and unordered!)

There is a data series d related to one variable x (from sensor s ):

→d = {d1, d2, … , dn}, s : x → d
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Statistical Features

Feature Formula
Sample Size n

Extrema min (x), max (x)

Sample Mean
¯̄x̄ =

Standard Deviation

s = √

Sample Variance

s2 =

... and many more
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Statistical Features

use math
Force  = [0.0,0.2,0.7,1.5,1.7,1.9,2.0,0.2,-0.5]
statsForce = fivenum(Force)
statsForce$std = sd(Force)
cprint(statsForce)
{min : -0.5 , q1 : 0.2 , median : 0.7 , mean : 0.855 , 
 q3 : 1.7 , max : 2, sd: 0.93}

Ex. 5. Statistical analysis of data series or vectors in R
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Statistical Features

Feature Formula
N-th moment about point a, e.g.,

a = x̄
μn (a) = ∑ (x − a)nP (x)

Gaussian Distribution
P(x) = e

−(x−μ)2/2σ2

Fisher Skewness
γ1 = = ,σ = √μ

2

... and many more
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Statistical Features

use math
Force  = [0.0,0.2,0.7,1.5,1.7,1.9,2.0,0.2,-0.5]
mn = moment(Force,order=2,central=TRUE)
print(mn)

Ex. 6. Higher order moment analysis of data series or vectors in R
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Statistical Features

Fig. 1. Meaning of higher order moments (Wikipedia)
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Statistical Features


Statistical analysis is applied to the same static variable X
with unordered values from repeated measurements of X
under the same conditions
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Statistical Features


Statistical analysis is applied to the same static variable X
with unordered values from repeated measurements of X
under the same conditions



Statistical measures for data series (e.g., time-dependent) of
dynamic variables with values from measurements under
different conditions are not valid ("non-sense"). But statistical
measures can be still used as signal features posing a
correlation between the input signal and the target features
(e.g., damages), e.g., the mean value or higher order
moments.
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Statistical Features


An ordered data series {d i} can be considered as an ordered
series of different variables {X i}!

Finally, all statistical features create a new input vector (for ML)
X f derived from the original input variables X:

Stat(X) : X → Xf

X = (X1, . . ,Xi),Xf = (Xf
1 , . . ,Xf

j ), i ≫ j
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Image Features

Low Level

1. Histogram H (I)={h 1,..,h k}, where each histogram variable
represents the number of pixels within an intensity interval [i,i+Δ]
(can be split into separate RGB histograms for colour images)

2. Average (mean) intensity I , noise (intensity distribution statistics)
3. Extrema intensities min (I), max (I)
4. Frequency spectrum F(I)={f 1,..,f s}, where each frequency

represents a wavenumber in the wave room
5. Intensity gradients and profiles along lines (axis)
6. Addition and subtraction of images (using, e.g., base-line

reference images)

PD Stefan Bosse - AFEML - Module A: Signal Features - Image Features

—

40 / 85



Image Features

High Level

1. Intensity gradients
2. Edges
3. Geometrical figures
4. Object clusters
5. Regions-of-interest (ROI), defined by bounding boxes or closed

polygons
6. Labelled and classified ROIs
7. Feature point markings
8. Threshold Binarization (dimensionality reduction and feature

amplification)
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Transformations

 Reduce Picture Dimension

A simple way to reduce the dimension of our feature vector is to
decrease the size of the image with decimation (downsampling) by
reducing the resolution of the image.

If the color component is not relevant, we can also convert
pictures to grayscale to divide the number dimension by three.

Intensity homogenisation using transfer functions

 A two-dimensional mathematical matrix is a grayscale image,
a three-dimensional mathematical matrix is a color image.
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Color Spaces

1. RGB: Three channels per pixel for each color R(ed), G(reen),
B(lue) providing the color intensity

2. RGBA: RGB with an additional alpha (tranparency) channel
3. Grayscale: One channel per pixel providing the intensity (average

or luminescence)

 Conversion from color to grayscale uses a specific color model
transformation. Be careful.
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Color Spaces

1. Average RGB ⇒ Grayscale transformation

I(x, y) =

2. More natural color weighted luma RGB ⇒ Grayscale
transformation

I(x, y) = 0.299R(x, y) + 0.587G(x, y) + 0.114B(x, y)

3. RGBA ⇒ Grayscale transformation

I(x, y) =

f(i, a) = (1 − a)k + ai

a =
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Look-up Tables


Intesnity distributions can be transformed with continous
functions e.g., an exponential gamma correction, or by using
a look-up table.

A look-up table can be considered as a discrete mapping function
f (x ): x → y, whereby the index, i.e,, a specific row, is given by
the (discrete) x value, and y is the value in the specific row.

Only meaningful for small and discrete intensity value ranges,
e.g., 8 Bit [0,255]

Only rough approximation of an intensity transfer function with
continous value distributions, but fast method!
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Look-up Tables

use plot,math,imager
vals = [1,3,5,6,7.5,8,8.5,9,9.5,10]
mylut = lut(vals,range=[0,9])
img = matrix(runif(100)*10,10,10)
img.isca = mylut(img)
plot(img,auto.scale=TRUE)
hist(img,breaks=20)
plot(img.isca,auto.scale=TRUE)
hist(img.isca,breaks=20)

Ex. 7. LUT function in R(+) applied to a random matrix
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Histogram of Oriented Gradient

The HOG feature descriptor is a popular technique used in computer
vision and image processing for detecting objects in digital images.

The HOG descriptor is a type of feature descriptor that
encodes the shape and appearance of an object by
computing the distribution of intensity gradients in an image.
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Histogram of an Image

use math,plot
img = matrix(runif(100),10,10)
plot(img,auto.scale=TRUE)
hist(img,ylim=[0,1])
img[img>0.5]=1
plot(img,auto.scale=TRUE)
hist(img,ylim=[0,1])

Ex. 8. Histogram of a uniformly distributed random image and image binarization
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Intensity Homogenization


The intensity of an image can vary significantly across the
spatial x-y plane, e.g., as a result of the measuring method
and conditions.

Image processing and transformation algorithms can be sensitive
to intensity inhomogeneity.

Algorithms:

Histogram Equalization (HE), Brightness Preserving Bi-
Histogram Equalization (BBHE)
Geometrical Image Intensity Equalization
Model-based (physical model of illumination)
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Microcracks Image Intensity Profiles
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[https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html]

Histogram Equalization

It is a method that improves the contrast in an image, in order to
stretch out the intensity range.
From the image below, you can see that the pixels seem clustered
around the middle of the available range of intensities.
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[https://github.com/YuAo/Accelerated-CLAHE]

Histogram equalization (HE) is a method in image processing of
contrast adjustment using the image's histogram.

This method usually increases the global contrast of many images,
especially when the usable data of the image is represented by
close contrast values.

Through this adjustment, the intensities can be better distributed
on the histogram.

 This allows for areas of lower local contrast to gain a higher
contrast and attention in visual inspection.
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Histogram Equalization stretch out this range.
Equalization implies mapping one distribution (the given
histogram) to another distribution (a wider and more uniform
distribution of intensity values) so the intensity values are spread
over the whole range.
To accomplish the equalization effect, the remapping should be
the cumulative distribution function (cdf). For the histogram H(i ),
its cumulative distribution H cd(i ) is (N: Number of pixels):

Hcd(i) =

Finally, we use a simple remapping procedure to obtain the
intensity values of the equalized image:

Ieq(x, y) = Hcd(I(x, y))
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Cummulative Distribution Function (CDF)

use math,plot
m=matrix(runif(100),10,10)
h=hist(m,ylim=[0,1],breaks=20,plot=FALSE)
print(h$density)
cdf=vector('numeric',length(h$density))
for (i in 1:length(h$density)) {
  cdf[i]=sum(h$density[1:i])
}
plot(cdf,auto.scale=TRUE,main='CDF')

Ex. 9. Higher order moment analysis of data series or vectors in R
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Spatial Image Intensity Equalization


This simple Histogram Equalization is not sensitive to spatial
intensity inhomogeneities and variations! Spatial uniform
intensity distributions are assumed!

Intensity variations can be a result of a statistical process or due
to the measuring technology and conditions

Variation can be considered as an overlay (addition) to the
"real" measuring signal s (x,y )v (x,y )+n (x,y ), and noise n

Methods based on a spatial filtering of the images use the
assumption that the bias field (intensity inhomogeneity) consists
of a low spatial frequency intensity variation ⇒ Applying a High-
pass filter in the wavenumber space!?

Low pass filtering methods can be used to extract non uniformity
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Trivial Approach

Assumption:
1. There is only one axis in the image with low-frequency

intensity variations due to inhomogeneous illumination
2. The image content has statistically averaged homogeneous,

i.e., equally distributed (small) features like cracks
The mean image intensity I mean(p ) can be computed along a line
l (p ) (parametric equation, orientation by visual inspection along
the strongest intensity variation/gradient) by using the average
intensity along the perpendicular line at each point p:

xl = x0 + ap

yl = y0 + bp

l(p) : p → (x, y)

l⊥(p, q) : q → (x, y)
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Fig. 2. (Left) Computing the average intensity I avg(p ) perpendicular to a line along

the intensity gradient (Right) Correct all pixels perpendicular to the correction line with
a equalization factor
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[https://github.com/YuAo/Accelerated-CLAHE]

Contrast Limited Adaptive Histogram Equalization

CLAHE (Contrast Limited Adaptive Histogram
Equalization) is an algorithm for enhancing local contrast in images,
and is frequently used in application areas like underwater
photography, traffic control, astronomy, and medical imaging.

CLAHE can also be used in the tone mapping operation of displaying
a HDR (High Dynamic Range) image.
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Adaptive histogram equalization (AHE) differs from ordinary
histogram equalization in the respect that the adaptive method
computes several histograms, each corresponding to a distinct
section of the image, and uses them to redistribute the lightness
values of the image.

It is therefore suitable for improving the local contrast and
enhancing the definitions of edges in each region of an image.

AHE has a tendency to overamplify noise in relatively
homogeneous regions of an image.

A variant of adaptive histogram equalization called contrast
limited adaptive histogram equalization (CLAHE) prevents this
by limiting the amplification.
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1. Compute the neighborhood histogram for each pixel in the
image.

2. Clip each histogram at a predefined value and redistribute
the clipped histogram equally among all the histogram bins.

3. Compute the CDF (Cumulative Distribution Function) and
transformation function for each pixel using the clipped
histogram.

4. Apply the transformation function to each pixel to get the
equalized image.

Alg. 1. The basic CLAHE algorithm

PD Stefan Bosse - AFEML - Module A: Signal Features - Image Features

60 / 85



Frequency Transformation

Time-dependent signal s (t ) can be transformed in the frequency
space S (ω) by using a frequency transformation, e.g., Discrete
Fourier Transformation (DFT):

|DFT (s)| : s(t) → S(ω)

DFT ({xn}) : {xn} → {Xk}

Xk = ∑
0≤n<N

xne
k

Xk = ∑
0≤n<N

xn(cos( kn) − isin( kn))
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[TU Graz, IVU_frequency_2017]

The DFT transforms a series of complex numbers {x n} into a
sequence of complex numbers {X k}.

The transformation is reversible (as long as complex numbers,
i.e., magnitude and phase, is preserved).

Low-, High-, and Bandpassfiltering can be performed by applying
a mask function to the frequency distribution {X k} and
transforming back into time-space (blending in frequency space)
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[TU Graz, IVU_frequency_2017]

2D DFT

Images can be transformed into the frequency space, too, called
wavenumber space

A two-dimensional (2D) DFT is used (output is a matrix, too)

IF(k, l) = ∑
0≤m<N

∑
0≤n<N

I(m,n)e−2iπ(k +l )
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[TU Graz, IVU_frequency_2017]

 The signal frequency distribution is symmetric!
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Wavelet Decomposition

 Disadvantage of Fourier transformations is the lost of the
time or spatial information.

A solution can be the application of a moving window of size m ≪
n, with n as the sample size (time signal: number of time
samples, image: width and height).

But: The Fourier transformation delivers m/2 frequencies
If the window size is lowered, the time or spatial resolution
increases, but the frequency resolution decreases!



Wavelet decomposition is a way of breaking down a signal in
both space and frequency. In the case of pictures, this means
breaking down the image into its horizontal, vertical, and
diagonal components.
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[Parida et al.,2017]

Wavelet Decomposition

Fig. 3. Decomposition of an image 2-D discrete wavelet transform with filter banks (2-
D DWT)
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[Bosse et al., doi:10.3390/computers10030034]

Wavelet Decomposition

Fig. 4. Example of a DWT signal decomposition of a US time-dependent signal
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[https://www.section.io/engineering-education/wavelet-transform-analysis-of-images-using-waveletanalyzer-toolbox-in-matlab/]


An image wavelet is a two-dimensional function Φ(x,y ), and
we need two.dimensional convolution operations. Time
consuming!

Fig. 5. Examples of 2D wavelets (Left) Haar (Right) Max Hat
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Wavelet Decomposition

Instead performing a 2-D wavelet convolution, we can apply the
1-D transformation to the rows and columns of images as
separable 2-D transformations.

In most applications where wavelets are used for image
processing, this approach is more practical due to the low
computational complexity of separable transformations.

Each decomposition reduces the image size by a factor 2 in each
dimension: DWT: M × M → M/2 × M/2;

The DWT decomposition can be repeated by using the ouput of
the previous level
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Wavelet 1st Level Wavelet 2nd Level

[https://www.section.io/engineering-education/wavelet-transform-analysis-of-images-using-waveletanalyzer-toolbox-in-matlab/]

Wavelet Decomposition
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Wavelet Image Decomposition Wavelet Image Reconstruction

Wavelet Decomposition and Reconstruction
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Image Gradient

The (intensity) gradient of an image is the vector ∇I(x,y ). It is
characterized by a magnitude m and a direction φ in the image:
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Image Laplacian

Another important image transformation is the Laplacian of an image
with intensity I(x,y ) that is defined by:

Invariant to image rotations.
The laplacian is often used in image enhancement to increase
contour effects

Higher sensitivity to noise than the gradient.
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Edge Detection

Two main strategies:

1. Gradient strategy: detection of the local extrema in the gradient
direction.

2. Laplacian strategy: detection of zero-crossing.

These strategies rely on the fact that edges correspond to 0-order
discontinuities of the intensity function.

The derivative computation requires a pre-filtering of the images.

For instance: linear filtering for zero mean noises (e.g. white
Gaussian noise and Gaussian filter) and non-linear filtering for
impulse noise (median filter).

Since all edge detection results are easily affected by the noise in
the image, it is essential to filter out the noise to prevent false
detection caused by it. To smooth the image, a Gaussian filter
k l i l d i h h i
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Edge Detection: Sobel Derivative Filter

The Sobel filter is a x- and y-sensitive gradient filter by using a
convolution operation with two 3×3 kernels.. The x- and y-gradients
are merged finally in one image.

use math,imager,plot
img.sobel <- sobelEdges(img,blur=2,gradient=TRUE)
print(summary(img.sobel))
plot(img.sobel,auto.scale=TRUE)

Ex. 10. Sobel edge filter. The gaussian blurring is essential to reduce noise.
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[https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html]

Edge Detection: Canny Filter

The canny edge filter is a multi-stage algorithm. After denoising,
intensity gradients of the image are computed ofr x- and y-direction,
then a non-maximum suppression is applied, finally applying a
hysteris threhold filtering.

use math,imager,plot
img.canny <- cannyEdges(img,t1=0,t2=50,blur=4)
print(summary(img.canny))
plot(img.canny,auto.scale=TRUE)

Ex. 11. Canny edge filter. The gaussian blurring is essential to reduce noise. The edge
detection thresholds t 1 and t 2 relate to the intensity gradient and must be set

carefully.
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[https://towardsdatascience.com/types-of-convolution-kernels-simplified-f040cb307c37]

Kernel-based Convolution Algorithms

Convolution is using a kernel matrix to extract certain features from
images.

A kernel is a matrix, which is shifted across the image and
multiplied with the input pixels covered by the kernel matrix such
that the output is transformed in a certain desirable manner.
Watch this in action below.
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Geometric Transformations

Simple geometrical operations of entire image or parts of the image
are:

1. Translation;
2. Rotation around a specific position;
3. Scaling.

Advanced geometrical operations of entire image:

1. Linear affine transformations (including combinations of
simple operations from above)

2. Image warping (using affine transformations)
3. Non-linear transformations for the correction of geometric

distortions like Barrel and Pincushin ⇒ Fisheye Correction
4. Perspective transformations (perspective warping)
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[https://www.image-engineering.de/library/image-quality/factors/1062-distortion]

Geometric Distortions

Fig. 6. Local geometric distortions caused by optical imaging (lense distortion)
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Measurement error and con�dence

Systematic deviation (systematic error)

Deviation is caused by the sensor, environment, and sometimes
physical processes
E.g.: incorrect calibration, constantly existing faults such as
friction
Can only be eliminated by carefully examining the source of the
error

Random deviation (Random or statistical error)

Deviation is caused by unavoidable, irregular disturbances
with repeated measurement, individual results differ from each
other
Individual results vary by an average value
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Measurement error and con�dence

Random error scattering

Random errors affect the accuracy of a measurement (noise).

Noise affects input and target feature computation (ML output)!

If one repeats a measurement of a quantity X which is falsified by
pure random errors, the frequency distribution of the measured
values is S = {s 1, s 2,...,s n} by a mean value S̄ given by a
Gaussian distribution (the number of measurements N must be
large).
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[9]

Fig. 7. Frequency distribution according to Gauss of measured values centered around
an average value
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Examples: Statistical Analysis
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Summary

Data can be classified into:
Categorical variables and values
Metric variables and values
Temporal static variables
Temporal dynamic variables (time series)

All sensor variables are subject to measurement errors:
Noise
Distortion
Displacement (bias)
Problem of reproducibility and systematic errors (environment!)

A (statistical) data analysis is often the first step in the ML workflow
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Summary

There are different levels of sensor data features
Aggregates like statstical measures
Time- and freqency domain features
Spatial features like edges in images or geometric properties
Region-of-Interest Markinh
Semantic features, i.e., classified features like damages


The signal feature selection and extraction is the first step to
compute and detect target features like damages using data-
driven models.

PD Stefan Bosse - AFEML - Module A: Signal Features - Summary

85 / 85


