
Automated Feature Extraction with Machine
Learning and Image Processing

PD Stefan Bosse

University of Siegen - Dept. Maschinenbau
University of Bremen - Dept. Mathematics and Computer Science

1 / 42

Machine Learning in Image Processing
PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing -

2 / 42

Feature Classes

Machine Learning is commonly a data-driven approximation
of a functional model f (x):x → y, with x as input and +y*
as output (target) features.

There are basically two different ML tasks:

1. Classification ⇒ Symbolic / categorical and discrete target feature
variables

2. Regression ⇒ Numeric and continuous target feature variables

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Feature Classes

3 / 42

Feature Classes

Examples for categorical features:

Damage (boolean decision, classification of damages like cracks,
delaminations, and so on)
Quality assessment (boolean decision, grade levels, class A/B/C,
and so on)
Geometrical objects (shapes, like lines, circles, ellipses)

Examples for numerical features:

Material density, average pore size and/or density, crack length
and/or density, and so on
Mechanical properties (stiffness, homogeneity, and so on)
Predictive lifetime
Statistical aggregates (noise, average inhomogeneity, average size
or density of impurities)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Feature Classes

4 / 42

Image Classes

1. Two-dimensional intensity (photography) images (intensity
represents surface reflection or material transmission)

Gray-level or multi-channel color (RGB, red, green, and blue
channels);
Typical dimension 1000 × 1000 pixels;
Typical intensity resolution 8 bit (256 levels, gray or RGB),
high-quality 16 bit (65536 levels)
Volume dimension: height × width × channels
Common data file formats: PNG, BMP, TIFF (not JPEG:
irreversible compression creating image artifacts)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Classes

5 / 42

Image Classes

2. Three-dimensional tomography images (intensity represents
material density)

Gray-level
Sliced image stack
Typical dimension 1000 × 1000 pixels × 1000 (100) pixels;
Volume dimension: height × width × depth
Common data file formats: numpy, ZIP of tiff files, Vol3, RAW,
DICOM (medicine) ..

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Classes

6 / 42

[https://www.matsusada.com/column/ct-tech2.html]

Image Classes

Fig. 1. DICOM CT scan data file format merging meta and raw image data

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Classes

7 / 42

https://www.matsusada.com/column/ct-tech2.html

Image Feature Extraction

Target output features can be predicted by the data-driven model
basically in two ways:

1. Using raw image input data;
2. Using computed (intermediate) image features.

Examples of computed image features:

Image intensity distribution, inhomogeneity
Detection and characterisation of geometrical object shapes (e.g.,
circles)
Image transformations, i.e.,

wave-number frequency transformation,
gradient amplification using convolutional filter operations,
binarisation using a threshold

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Feature Extraction

8 / 42

Image Feature Extraction

Example: Pore characterisation in Microsclices of AM parts

Fig. 2. (Left) Microgrpah image of a material slice with pores/impurities (Middle) Edge
detection using a Canny filter (Right) Shape characterisation by ellipse fitting

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Feature Extraction

9 / 42

Image Feature Extraction

Example: Pore characterisation in X-ray images from die casted plates

Fig. 3. (left) Die casted aluminum plate with pores (Center) Single projection X-ray
image of plate (Right) Pore marking by semantic pixel classifier (white=pore feature)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Feature Extraction

10 / 42

Work�ow for Object Feature Detection

Data: Micrograph images of material slices from rectangular probes
proced with Additive Manufacturing technologies (metal powder laser
melting).

Object Features: Elliptical pores (impurities) characterised by
varying size (axis lengths of ellipse), orientation, density, and spatial
distribution (inhomogeneity)

Target Features: Statistical and geometrical characterisation of
pores, material density, distribution of defects

Feature extraction should be scale, intensity, and position
invariant! I.e., object detection should be possible for objects
of different sizes, orientation, and position within the images
and different image exposures.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Workflow for Object Feature Detection

11 / 42

Work�ow for Object Feature Detection

1. Threshold binarisation of micrograph images
2. Application of Canny Filter to extract pore edges / boundaries

(Parameter selection!)
3. Creation of a linear point list (coordinates of marked

boundary points of pores)
4. Density-based Clustering (DBSCAN) to get groups of points

belonging to one pore object
5. ROI bounding box approximation for each point cluster group

(iterative expansion and shrinking)
6. Ellipse fitting (direct algebraic method), feature calculation

(axis lengths, orientation, area)
7. Statistical characterisation

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Workflow for Object Feature Detection

12 / 42

Image Binarization

I
1
b (x, y) = {

1 I(x, y) ≥ Ithr

0 I(x, y) < Ithr

I 0
b (x, y) = {

1 I(x, y) ≤ Ithr

0 I(x, y) > Ithr

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Binarization

13 / 42

Image Binarization

Ex. 1. R+ microslice image pre-processing: Normalization and Binarization (0/255)

i1 = load.image('http://edu-9.de/uploads/assets/pores_microsl
m1 = as.matrix(i1,mode='uint8')
print(minMax(m1[100:200,100:200]))
m1.binary = matrix(255,nrow(m1),ncol(m1),mode='uint8')
m1.binary[m1>100]=0
plot(m1.binary)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Image Binarization

14 / 42

[DOI:10.1109/ICSMC.2009.5346873]

Edge Detection with Canny Filter

Fig. 4. Canny edge detection algorithm

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Edge Detection with Canny Filter

15 / 42

Edge Detection with Canny Filter

Ex. 2. R+ microslice image pre-processing: Normalization and Binarization (0/255)

use math,imager,plot

i1 = load.image('http://edu-9.de/uploads/assets/pores_microsl
m1 = as.matrix(i1,mode='uint8')
m1.stats = minMax(m1)
m1.stats$mean = mean(m1)
m1 = (m1 - m1.stats$min)
m1[m1>100] = 255
print(m1.stats)
plot(m1)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Edge Detection with Canny Filter

16 / 42

Edge Detection with Canny Filter

use math,imager,plot

m1.edges=cannyEdges(m1,t1=50)
plot(m1.edges)

Ex. 3. Canny edge filter in R+

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Edge Detection with Canny Filter

17 / 42

[https://medium.com/@agarwalvibhor84/lets-cluster-data-points-using-dbscan-278c5459bee5]

Point Clustering using DBSCAN

Try to group points from Canny edges to define a ROI marking a
pore candidate

Fig. 5. Three point classes: Core, Border, Noise

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Point Clustering using DBSCAN

18 / 42

https://medium.com/@agarwalvibhor84/lets-cluster-data-points-using-dbscan-278c5459bee5

Core point
A selected point is a core point if it has at least minimum number of points (MinPts
) including itself within its epsilon-neighborhood. In figure 1, red points are core
points that have at least MinPts=4 in their neighborhood. If we’ve a core point, it
means it is a dense region.

Border point
A selected point that is within a neighborhood of a core point but it itself cannot be
a core point. In the figure 1, yellow points are identified as border points. If we’ve
a border point, it means the point is in a vicinity or at the border of dense region.

Noise point
A selected point that is neither a core point nor a border point. It means these
points are outliers that are not associated with any dense clusters. In the figure 1,
blue point is identified as noise point.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Point Clustering using DBSCAN

19 / 42

DBSCAN Algorithm

Initially, the algorithm begins by selecting a point randomly uniformly from the set of
data points. Checks if the selected point is a core point. Again, a point is a core point if
it contains at least MinPoints number of minimum points in its epsilon-neighborhood.

Then, finds the connected components of all the core points, ignoring non-core points.

Assign each non-core point to the nearest cluster if the cluster is its epsilon-neighbor.
Otherwise, assign it to noise.

The algorithm stops when it explores all the points one by one and classifies them as
either core, border or noise point.

Alg. 1. DBSCAN

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Point Clustering using DBSCAN

20 / 42

ROI Bounding Box Approximation from point list

Output from DBSCAN: List of point groups from canny edge filter

Calculate rectangular (not rotated) average bounding boxes (pore
boundary point group)

Fig. 6. An initial ROI (red) positioned at the center of mass of a point cluster is
expanded iteratively by increasing one side and computing the point sum along this
side. If the line is empty, the next side is expanded.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - ROI Bounding Box Approximation from point list

21 / 42

ROI Bounding Box Approximation from point list

Bounding boxes can be computed from a pixel set list, i.e., a list
of coordinate vectors

use math, imager, plot
pxs = {
 [1,2],
 [3,9],
 [4,7]
}
pxs.bbox = bbox(pxs)
print(pxs.bbox)

Ex. 4. Example of a bbox calculation from a pixel set list

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - ROI Bounding Box Approximation from point list

22 / 42

[Halı́ř, FLusser, Numerically stable direct least squares fitting of an ellipse]

Ellipse Fitting from point list

Problem: Calculate the parameters of an ellipse equation for a set of
boundary points.

General Ellipse Equation

F(x, y) = ax2 + bxy + cy2 + dx + ey + f = 0

b2 − 4ac < 0

with a,b,c,d,e, and f coefficients.

→a = [a, b, c, d, e, f]T

→x = [x2,xy, y2,x, y, 1]

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Fitting from point list

23 / 42

Minimization Problem

The ellipse-specific fitting problem for a set of points p can be
reformulated as:

min
a

∣∣∣∣D̂→a∣∣∣∣
2
, →aT Ĉ→a = 1

with D as the design matrix containing expanded ellipse equation
terms, one row for each point:

D̂ =
⎛
⎜
⎝

x2
1 x1y1 y2

1 x1 y1 1

.

x2
n xnyn y2

n xn yn 1

⎞
⎟
⎠

and C is a 6 × 6 constraint matrix (independent from the number of
points).

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Fitting from point list

24 / 42

Solving an Eigenvalue Problem

The minimization problem is ready to be solved by a quadratically
constrained least squares minimization.

We get a solution of the minimization problem by solving the
Eigenvalue Problem, getting the Eigenvectors, and applying some
filtering (only positive Eigenvalue are selected)

min
a

∣∣∣∣D̂→a∣∣∣∣
2
, →aT D̂

T
→a = λ→a

T
Ĉ→a = λ

%% Pseudo Code!
function fit_ellipse(x, y) {
 D = [x.*x x.*y y.*y x y ones(size(x))]; % design matrix
 S = D’ * D; % scatter matrix
 C(6, 6) = 0; C(1, 3) = 2; C(2, 2) = -1; C(3, 1) = 2; % constraint matrix
 [gevec, geval] = eig(inv(S) * C); % solve eigensystem
 [PosR, PosC] = find(geval > 0 & ̃isinf(geval)); % find positive eigenvalue
 a = gevec(:, PosC); % corresponding eigenvector
 a
}

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Fitting from point list

25 / 42

Fig. 7. Examples of results from the Canny-DBSCAN-ROI-ElliFit workflow for a ADM
micrograph image

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Fitting from point list

26 / 42

Ellipse Features

Solving the general ellipse equation delivers six polynomial
parameters. But relevant for pore analysis are the following
parameters:

1. Major and minor axis lengths w and h

2. Orientation angle of the major axis θ

3. Area A of the ellipse

4. Center coordinates

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Features

27 / 42

Ellipse Features

These parameters can be derived from the general equation
parameters:

cx =

cy =

w = √

h = √

θ = tan−1(2)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Ellipse Features

2cd − be

b2 − 4ac
2ae − db

b2 − 4ac

−4fac + cd2 + ae2

4ac2

−4fac + cd2 + ae2

4a2c

b

a − c

360

4π

28 / 42

Statistical Analysis

1. Average Density (from binarized image)

2. Average pore size (from ellipse fitting), aspect ratio w/h,
variance of these features

3. Average pore orientation

4. Spatial distribution of pores

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Statistical Analysis

29 / 42

[Khan et al., 2018]

Data-driven Modelling and Machine Learning

Fig. 8. (Top) Training of a data-driven machine model (Bottom) Application and
inference

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Data-driven Modelling and Machine Learning

30 / 42

Convolutional Neural Networks

Convolutional Neural Networks combine typically:

1. Multi-dimensional matrix convolution with arbitrarily sized filter
kernels

Mapping of matrix data on matrix data (commonly
dimensionality expansion)

2. Fully connected neural node layers

Mapping of vectors on scalar valies (dimensionality reduction)

3. Pooling layers

Data reduction (fusion)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Convolutional Neural Networks

31 / 42

[Ragav Venkatesan and Baoxin Li,2018]

CNN Architecture

Fig. 9. Examples of CNN architecture consisting of interlacing different class layers

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - CNN Architecture

32 / 42

[Khan et al., 2018]

Convolutional Neural Networks

Fig. 10. The relation between human vision, computer vision, machine learning, deep
learning, and CNNs.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Convolutional Neural Networks

33 / 42

Vector, Matrix, and Tensor Data

Vector

A vector is commonly a linear list of values (real or complex type):

→x = [v1, v2, . . , vn]

→a ⊙ →b = [c1, c2, ci, . . , cn], ci = ai ⋅ bi,n = |a| = |b|

→x ⋅ →w =
n

∑
i=1

xiwi,n = |x| = |w|

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

34 / 42

Vector, Matrix, and Tensor Data

Matrix

m̂ =
⎡
⎢
⎣

v1,1 v1,2 . . v1,i

.

vj,1 vj,2 . . vj,i

⎤
⎥
⎦

â ⊗ b̂ =
n

∑
i=1

m

∑
j=1

ai,jbj,i,n = rows(a),m = cols(b)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

35 / 42

Vector, Matrix, and Tensor Data

Tensor

A scalar is a level zero tensor.

A vector is an array of numbers along an axis (level one tensor).

A matrix is an arrangement of numbers along two axes (level
two tensor).

A tensor is an arrangement of numbers along n axes.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

36 / 42

Vector, Matrix, and Tensor Data

Volumes

Volumes are (here) three-dimensional data structures
representing vectors, 2D matrix, and 3D tensor objects.

A volume is a packed linear array of values with a 321
Layout:

First order (most significant) index dimension is depth (sz)
Second order index dimension is width (sx)
Third order(least significant) index height (sy)

Input, intermediate, output and kernel data can be represented by
volumes

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

37 / 42

Vector, Matrix, and Tensor Data

Fig. 11. Packed linear data model (memory layout) of 3D volumes

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

38 / 42

Vector, Matrix, and Tensor Data

Operations

Addition (elementwise)
Multiplication (elementwise)
Multiplication and Addition (Dot Product)
Convolution (Mapping)
Transformation (including Fourier)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Vector, Matrix, and Tensor Data

39 / 42

Convolutional Layer

In contrast to kernel-based filtering operations using commonly 3
× 3 two-dimensional filters, convolution can be performed here
with any kernel size and dimension.

In contrast to kernel-based filtering operations, the kernel
parameters (weights) are not pre-determined. They are evolved
during the ML training process.

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Convolutional Layer

40 / 42

Convolutional Layer

Fig. 12. Convolution with N filters applied to one input image (stride: shift of filter
position in each dimension)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Convolutional Layer

41 / 42

[Ragav Venkatesan and Baoxin Li,2018]

Example: Handwritten Digit Recognition

Fig. 13. CNN layers and configuration for handwritten digit recognition (using the
MNIST data set consisting of 28 × 28 × 1 images)

PD Stefan Bosse - AFEML - Module D: Machine Learning in Image Processing - Example: Handwritten Digit Recognition

42 / 42

