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Image Analysis with CNN

CNNs are a useful class of models for both supervised and
unsupervised learning paradigms.
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The CNN learns to map a given image to its corresponding
category by detecting a number of abstract feature
representations, ranging from simple to more complex ones.

These discriminative features are then used within the
network to predict the correct category of an input image.
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Applications of Convolutional Neural Networks

1. Classification of entire images

2. Detection of objects (partial segments of an image)

3. Detection and classification of objects

4. Regression of a numerical target variable

5. Anomaly Detection (non-classified)
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Layers of CNN

1. Pre-processing
2. Convolutional Layer
3. Pooling Layer
4. Fully-connected Neural Node Layer
5. Softmax Layer
6. (Transposed Convolutional Layers)
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[Khan, A Guide to CNN for Computer Vision, 218]

Pre-processing

Mean-subtraction
The input patches (belonging to both train and test sets) are zero-
centered by subtracting the mean computed on the entire training
set. Given N training images, each denoted by x ∈ R h × w × c,we
can denote the mean-subtraction step as follows:

x̂0 = x̂ − ¯̄x̄, ¯̄x̄ =
N

∑
i=1

xi
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Normalization
The input data (belonging to both train and test sets) is divided
with the standard deviation of each input dimension (pixels in the
case of an image) calculated on the training set to normalize the
standard deviation to a unit value. It can be represented as
follows:

x̂n =
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√∑N

i=1(xi−
¯̄x̄)

2

N−1
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PCA Whitening
The aim of PCA whitening is to reduce the correlations between
different data dimensions by independently normalizing them.

This approach starts with the zero-centered data and calculates
the covariance matrix which encodes the correlation between data
dimensions.

This covariance matrix is then decomposed via the Singular Value
Decomposition (SVD) algorithm and the data is decorrelated by
projecting it onto the eigenvectors found via SVD.

Afterward, each dimension is divided by its corresponding
eigenvalue to normalize all the respective dimensions in the data
space.
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Local Contrast Normalization
This normalization scheme gets its motivation from neuroscience.
As the name depicts, this approach normalizes the local contrast
of the feature maps to obtain more prominent features.

It first generates a local neighborhood for each pixel, e.g., for a
unit radius eight neighboring pixels are selected.
Afterward, the pixel is zero-centered with the mean calculated
using its own and neighboring pixel values.
Sim-ilarly, the pixel is also normalized with a standard deviation of
its own and neighboring pixel values (only if the standard
deviation is greater than one).
The resulting pixel value is used for further computations.
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Convolutional Layer

In contrast to kernel-based filtering operations using commonly 3
× 3 two-dimensional filters, convolution can be performed here
with any kernel size and dimension.

In contrast to kernel-based filtering operations, the kernel
parameters (weights) are not pre-determined. They are evolved
during the ML training process.
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Convolutional Layer

Fig. 1. Convolution with N filters applied to one input image (stride: shift of filter
position in each dimension)
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Padding, Striding, and Dilation

Fig. 2. The filter is slided onto the input feature map to compute the corresponding
value in the output feature map. The 2 × 2 filter (shown in green) is multiplied with
the same sized region (shown in orange) within a 4 × 4 input feature map and the
resulting values are summed up to obtain a corresponding entry (shown in blue) in the
output feature map at each convolution step. Filter Image Filter
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Padding, Striding, and Dilation

Fig. 3. Convolution layer with a zero padding of 1 and a stride of 2
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For a filter with size f × f pixels, an input feature map with size h ×
w pixels, a stride length s, and zero-padding of p, the output feature
dimensions are given by:

ho = ⌊ ⌋,wo = ⌊ ⌋
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The padding convolutions are usually categorized into three types
based on the involve- ment of zero-padding.

Valid Convolution is the simplest case where no zero-padding is
involved. The filter always stays within “valid” positions (i.e., no zero-
padded values) in the input feature map and the output size is
reduced by f - 1 along the height and the width.

Same Convolution ensures that the output and input feature maps
have equal (the “same”) sizes. To achieve this, inputs are zero-
padded appropriately. For example, for a stride of 1, the padding is
given by p=└f/2┘. This is why it is also called “half ” convolution.
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Full Convolution applies the maximum possible padding to the
input feature maps before convolution. The maximum possible
padding is the one where at least one valid input value is involved in
all convolution cases. Therefore, it is equivalent to padding f - 1
zeros for a filter size f so that at the extreme corners at least one
valid value will be included in the convolutions.
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Receptive Field



Instead of defining convolutional filters that are equal to the
spatial size of the inputs, we define them to be of a
significantly smaller size compared to the input images (e.g.,
in practice 3 × 3, 5 × 5, and 7 × 7 filters are used to process
images with sizes such as 110 × 110, 224 × 224, and even
larger).
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Receptive Field

This design provides two key benefits: (a) the number of learn-
able parameters are greatly reduced when smaller sized kernels
are used; and (b) small-sized filters ensure that distinctive
patterns are learned from the local regions corresponding to, e.g.,
different object parts in an image.

The size (height and width) of the filter which defines the spatial
extent of a region, which a filter can modify at each convolution
step, is called the “receptive field” of the filter.

Note that the receptive field specifically relates to the spatial
dimensions of the input image/features. When
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Extending the Receptive Field

In order to enable very deep models with a relatively reduced
number of parameters, a successful strategy is to stack many
convolution layers with small receptive field.

However, this limits the spatial context of the learned
convolutional filters which only scales linearly with the number of
layers. In applications such as segmentation and labeling, which
require pixel-wise dense predictions, a desirable characteristic is
to aggregate broader contextual information using bigger
receptive fields in the convolution layer.


Dilated convolution is an approach which extends the
receptive field size, without increasing the number of
parameters.
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Fig. 4. Convolution with a dilated filter where the dilation factor is d = 2
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For a filter with size f × f pixels, an input feature map with size h ×
w pixels, a stride length s, zero-padding of p, and dilation d, the
output feature dimensions are given by:

ho = ),wo = )
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f−1

s
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f−1

s

21 / 46



Fig. 5. The effective receptive field with respect to the input image is shown in orange
at each convolution layer.
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Convolution with R

use math,plot
m = matrix(runif(100*100),100,100)
plot(m,auto.scale=TRUE)
k = [|
 1,0,2;
 3,1,-3;
 2,0,-1
|]
m.conv = convolution(m,k,padding=0)
print(summary(m.conv))
plot(m.conv,auto.scale=TRUE)

Ex. 1. Convolution operation in R(+)
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Nonlinearity

The weight layers in a CNN (e.g., convolutional and fully
connected layers) are often followed by a nonlinear transfer (or a
piece-wise linear) function.

The transfer (or activation) function takes a real-valued input and
squashes it within a small range such as [0; 1] or [-1; +1].

The application of a nonlinear function after the weight layers
is highly important, since it allows a neural network to learn
nonlinear mappings.
In the absence of nonlinearities, a stacked network of weight
layers is equivalent to a linear mapping from the input domain
to the output domain.
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Sigmoid (logistic)

The sigmoid activation function takes in a real number as its input,
and outputs a number in the range of [0,1]. It is defined as:

fsigm(x) =

Tanh

The tanh activation function implements the hyperbolic tangent
function to squash the input values within the range of [ 1; 1]. It is
represented as follows:

ftanh(x) =
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√1 + x2
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Recti�er Linear Unit

The ReLUis a simple activation function which is of a special practical
importance because of its quick computation. A ReLU function maps
the input to a 0 if it is negative and keeps its value unchanged if it is
positive. This can be represented as follows:

frelu(x) = max (0,x)

Noisy RELU

The noisy version of ReLU adds a sample drawn from a Gaussian
distribution with mean zero and a variance which depends on the
input value (σ(x)) in the positive input. It can be represented as
follows:

fnrelu(x) = max (0,x + ϵ), ϵ ∈ N(0,σ(x))
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Leaky and parametric ReLU

The rectifier function completely switches off the output if the input is
negative. A leaky ReLU function does not reduce the output to a zero
value, rather it outputs a down-scaled version of the negative input.
This function 8and more general with parameter p ) is represented
as:

fp-relu(x) = {
x if x ≥ 0

px if x ≤ 0
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Fig. 6. Different transfer/activation functions applied to product-sums (convolutional or
neural network layer)
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Pooling Layer

Apooling layer operates on blocks of the input feature map and
combines the feature activations. This combination operation is
defined by a pooling function such as the average or the max
function. Similar to the convolution layer, we need to specify the
size of the pooled region and the stride.

Convolution is pooling with a weighted sum (product sum),
poolign applies different mapping functions, e.g., a maximum or
relu function.

The max pooling operation is commonly used, where the
maximum activation is chosen from the selected block of values.

This window is slided across the input feature maps with a step
size defined by the stride
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Fig. 7. The operation of max-pooling layer when the size of the pooling region is 2 × 2
and the stride is 1.
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(Fully Connected) Neural network Layer

Fully connected layers correspond essentially to convolution layers
with filters of size 1 × 1.

Each unit in a fully connected layer is densely connected to all the
units of the previous layer.

In a typical CNN, fully-connected layers are usually placed toward
the end of the architecture.

However, some successful architectures are reported in the
literature which use this type of layer at an intermediate
location within a CNN.
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Its operation can be represented as a simple matrix multiplication
followed by adding a vector of bias terms and applying an
element-wise nonlinear function:

→y = f(Ŵ
T
→+→b)

with W as the weights matrix and b as the bias vector (offset shift).

One node of the FNN (u → v ) can be compuetd by a product
sum and the application of the transfer function f:

v = f(
n

∑
i=1

wiui + b)
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Fig. 8. A Fully-connected Neural Network architecture
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Softmax Layer

Another transfer function usefull for classification that is used in
the output layer of multilayer pattern recognition networks is the
softmax function. This transfer function has the form:

σ(→z)i =

→z = (z1, z2, . . , zn), |z| = n



The outputs of the softmax transfer function can be
interpreted as the probabilities associated with each class
normalized with all other probabilities. Each output will fall
between 0 and 1, and the sum of the outputs will equal 1.
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Locality and Invariance

Locality can be defined in terms of adjacency of dimensionality of
signals under a special ordering.

A set of connections are local if they are connected to adjacent
dimensions in the ordering of the signal.

In the case of images, this corresponds to neighboring pixels.
One of our aims in looking at locality for images is that we have
pixels that are ordered in a sequence and we want to exploit the
relationship between pixels in this ordering (e.g., composing
objects like pores or cracks).

There are cases, other than images, where this is also used. For instance, in the case
of audio signals the ordering is by time. In the case of images, the ordering is naturally
the ordering of pixels in the image itself
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A classifier or regression function applied to images should be
indenpendent (invariant) to absolute position, rotation, and
scaling.
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Training Classes

Negative Training
A predictor model is trained on a limited set of well known
features, e.g., damages, but including the base-line reference
(i.e., none of the damage features). This is basically supervised
learning of classifiers or regression models with labelled data.

Positive Training
A generative predicotr model is trained with base-line (reference)
data only containing no target features, e.g., damages. The
generative model should reconstruct its input data, i.e., it is an
Encoder-Decoder architecture compressing the input (e.g., an X-
ray image or GUW signal) and finally decompressing the code
again to reconstruct the original data (with slight difefrence). If
there is a dmaage feature inside the input data, the model is not
able to reconstruct the changed data, and an error occurs ⇒
Anomaly Detector. This is basically unsupervised learning.
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ROI and Anomaly Detection in Radiography Data

Goal. Detect pores in Aluminum Die casted plates in X-ray
radiography data automatically.

System. Industrial X-ray Radiography devices providing
different resolutions and X-ray energies, prepared AluDC plates.

Methods and Algorithms. Semantic Pixel Classifier with a
simple CNN, DBSCAN pixel clustering, Ellipse Fitting.
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Stefan Bosse and Dirk Lehmhus. Automated Detection of hidden Damages and
Impurities in Aluminum Die Casting Materials and Fibre-Metal Laminates using
Low-quality X-ray Radiography, Synthetic X-ray Data Augmentation by
Simulation, and Machine Learning, arXiv:2311.12041 [cs.CV] (2023)
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Fig. 9. Pore marking in X-ray images by using a moving window semantic pixel
classifier (CNN)
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ROI and Anomaly Detection in Radiography Data

Fig. 10. Examples of pore marking using a moving window semantic pixel classifier
(CNN) and synthetic X-ray image data
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ROI and Anomaly Detection in 3D CT Data

Goal. Detect regions of interest in CT data volumes
automatically. A ROI bases on anomaly detection and is a
candidate for a damages: Breakage, impurity, delamination,
cracks.

System. Micro X-ray CT devices providing different resolutions
and X-ray energies, prepared composite plates (e.g., GLARE).

Methods and Algorithms. Edge detection using kernel filters
and gradient algorithms, Z-profiling slicing the CT volume along
z-axis (depth), anomaly marking by LSTM, CNN, and SOM,
threshold discrimination.
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in Composite Materials, Measuring Signals, and Methods for Automated
Damage Diagnostics, Materials 15 (MDPI), no. 13 (2022): 4645
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Supervised CNN

Fig. 11. Z-profile signals as 1D images as input for a CNN damage classifier (ND: No
damage class, D1: Damage 1, D2: Damage 2, and so on)
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Supervised CNN

Fig. 12. (Left) Damage feature maps retrieved from four different CNN classifiers and
for the specimen A (training and prediction), B, C, and D) (Right) CT image volume
and selected x‐y slice visualization (A‐B) With centred resin defect in the PREG layer
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Unsupervised SOM

Fig. 13. Principle concept of Self-organising Maps (SOM). The neural node set {n}
(squares, left side) represents a feature map {f} (circles, right side)
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Fig. 14. SOM feature maps of the z-signal volumes for different specimen and with
different SOM network sizes (rows × columns); Specimen A: Sharp resin washout, B:
fuzzy resin washout; C: base-line; D: large area delamination
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Summary

Further depth reading: A Guide to ConvolutionalNeuralNetworks
for Computer Vision, Khan et al., 2018

CNN consists of different layers: Stacked convolutional layers,
pooling layers, fully-connected neural layers, and softmax layers
for classification.

The CNN learns to map a given image to its corresponding
category by detecting a number of abstract feature
representations, ranging from simple to more complex ones.

These discriminative features are then used within the network to
predict the correct category of an input image.
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