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Training and Validation of data-driven Models

Adapting dynamic parameters of a functional network is an
iterative optimization problem
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Training and Validation of data-driven Models

Adapting dynamic parameters of a functional network is an
iterative optimization problem

Commonly the solution space is infinite, i.e., there is no one
valid solution of the optimization problem.

Basic training is demonstrated for an Artificial Neural
Network
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A simple Arti�cial Neuron

A simple neuron (perecptron) is a mapping function f (a model) that
maps an n-dimensional input vector v on a scalar value u:

f(→x, →w, b) = g(
n

∑
i=1

wixi + b)

Here w is weight vector and b an offset (dynamic parameters). The
function g is called transfer or activation function, normally not
parametrized.
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A simple Arti�cial Neuron

Fig. 1. A single neuron with a single input p and an output o. w is a weighting factor
(a weight for incoming p ) and b is a bias (offset)
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A Multi-input Arti�cial Neuron

Fig. 2. A single neuron with an input vector p and a scalar output o. w is a weighting
factor vector (a weight for incoming p ) and b is a bias (offset)

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - A Multi-input Artificial Neuron

7 / 56



Arti�cial Neural Network

A ANN is a function graph consisting of interconnected neurons. It is
a graph G (V,N ) with a set of nodes (neurons) and vertices
connecting the nodes.



Commonly neurons are arranged and grouped in layers, but
this is not mandatory. There is always an input and one
output layer. Hidden layers are between input and output
layers.
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Arti�cial Neural Network

The input layer (commonly) consists of n neurons for n input
variables (attributes).

The output layer (commonly) consists of m neurons for m output
variables (regression) or m target classes (classification)

Commonly, but not mandatory, each neuron of a layer i is
connected with the outputs of all neurons of the previous layer i-1
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Arti�cial Neural Network

Fig. 3. Neural network with neurons arranged in one layer
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Loss and Error Functions

Assume there is a set of data samples D, each sample contains the x
input feature vector and output target feature vector y.

The goal of the model training is to find a model function that
maps x on y with minimal error for all instances (at least
averaged)

The loss or error function defines the mismatch of a training or
test sample with the output of the function f (here for one scalar
output y ):

y = f(→x)

MAE(y, y0) = |y0 − y|

MBE(y, y0) = y0 − y

MSE(y, y0) = (y0 − y)2
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Loss and Error Functions

For multiple outputs (y) we get:

→y = f(→x)

MAE(→y , →y0) =

MBE(→y , →y0) =

MSE(→y , →y0) =
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∣∣yi − y0,i

∣∣

n

∑n

i=1yi − y0,i

n

∑n
i=1(yi − y0,i)

2

n
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Training by Error Backpropagation

Most of the CNN layers involve parameters which are required to be
tuned appropriately for a given computer vision task (e.g., image
classification and object detection).

Assume again a single perceptron neuron with only two inputs a
and b.

Then we can change the respective weight parameter w just by
computing the "forward" application error, and subtracting the
error multiplied with the current input value from the weight w
(Rough approximation!):

w´i = wi − α(y − y0)xi
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WorkBook Live
CLEAR   LOAD   + -   Neuron

    

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Training by Error Backpropagation

14 / 56

javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;
javascript:;


Example

data = {
  {x1=0,  x2=0,  y=0}, 
  {x1=1,  x2=0,  y=0.3}, 
  {x1=0,  x2=1,  y=0.5}, 
  {x1=1,  x2=1,  y=1}, 
}
function sigmoid(x) {
  1/(1+exp(-x))
}
function neuron(x1,x2,w,b) {
  accu = x1w[1]+x2w[2]
  sigmoid(accu+b) 
}

Ex. 1. Some training data and the implementation of the sigmoid (logstic regression)
activation and neuron function with two inputs
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Example

w = [0,0] b=0 samples=1:4 rate=0.01
for (run in 1:1000) {
  set=sample(samples,1)
  row=data[[set]]
  y=neuron(row$x1,row$x2,w,b)
  err=y-row$y
  w[1]=w[1]-rate*err*row$x1
  w[2]=w[2]-rate*err*row$x2
  b=b-rate*err
}
print(w) print(b)

Ex. 2. Training with randomized selected sample instances
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Example

for (index in 1:4) {
  row=data[[index]]
  y=neuron(row$x1,row$x2,w,b)
  print(paste('Index',index,'Predicted',y,'Error',y-row$y))
}

Ex. 3. Test with sample instances

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Training by Error Backpropagation

17 / 56



Gradient Descent Method

Indeed, the gradient of the output error with respect to the
weight parameter w i is computed and subtracted from the
current weight parameter value:

w´i = wi − α

That means, the weight parameter is corrected by a term that
corresponds to the amount of the change of the error by changing
the weight by a small delta value.
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Fig. 4. The learning rate α determines the steps to be taken along the slope to achieve
the goal. Too large steps could result in jumping over or missing the point of global
minimum(also known as overshooting) and too small steps results in a very slow
process of achieving the goal. This is a hyperparameter that needs to be tuned. In
practice, people often start with 0.01, and either decrease or increase accordingly.
(Aminah Mardiyyah Rufai)
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Learning Rate

But: We have a lot of different training samples, and if we change
the parameter only based on the error from the current sample
we will not converge to an average!

Therefore, only a small fraction given by the learning rate
parameter α is used!

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Training by Error Backpropagation

20 / 56



Error backpropagation in layered Networks

Up to here we considered only one functional node (one neuron).

If parameters of functions of previous nodes/layers must be
adapted, the process is a little bit more complicated, although, the
same principle is applied, i.e., in general the derivative of the
error function by the respective weight/parameter to be adjusted
must be computed:
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[Matt Mazur, https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/]

Fig. 5. Example network with teo input node, two inner nodes, and two output nodes

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Training by Error Backpropagation

22 / 56

https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/


Let us now consider one node with an input vector x, a product-
sum result net (x,w) applied to the transfer function f, and a
resulting output out, then we can write by a simple chain rule:

= ⋅ ⋅
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In the hidden inner layer, we start with the same formula, but
slightly different to account for the fact that the output of each
hidden layer neuron contributes to the output (and therefore
error) of multiple output neurons.

We know that out h1 affects both out o1 and out o2 therefore the
gradient needs to take into consideration its effect on the both
output neurons:

= ⋅ ⋅

= +
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Fig. 6. Error backpropagation from output to inner layer nodes must consider error
accumulation by multiple nodes
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Weight Initialization



A correct weight initialization is the key to stably train very
deep networks. An ill-suited initialization can lead to the
vanishing or exploding gradient problem during error back-
propagation.

Gaussian Random Initialization

A common approach to weight initialization in CNNs is the Gaussian
random initialization technique. This approach initializes the
convolutional and the fully connected layers using ran- dom matrices
whose elements are sampled from a Gaussian distribution with zero
mean and a small standard deviation (e.g., 0.1 and 0.01).
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Uniform Random Initialization

The uniform random initialization approach initializes the
convolutional and the fully connected layers using random matrices
whose elements are sampled from a uniform distribution (instead of a
normal distribution as in the earlier case) with a zero mean and a
small standard deviation (e.g., 0.1 and 0.01).

The uniform and normal random initializations generally perform
identically.
However, the training of very deep networks can become a
problem with a random initializa- tion of weights from a uniform
or normal distribution.

The reason is that the forward and backward propagated
activations can either diminish or explode when the network is
very deep.
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Xavier Initialization

A random initialization of a neuron makes the variance of its output
directly proportional to the number of its incoming connections (a
neuron’s fan-in measure).

To alleviate this problem, Glorot and Bengio [2010] proposed to
randomly initialize the weights with a variance measure that is
dependent on the number of incoming and outgoing connections
(n fin and n fout respectively) from a neuron,

V ar(w) =

where w are network weights. Note that the fan-out measure is used
in the variance above to balance the back-propagated signal as well.
Xavier initialization works quite well in practice and leads to better
convergence rates.
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ReLU-scaled Initialization

Neurons (or filters with transfer functions) with a ReLU non-linearity
do not follow the assumptions made for the Xavier initialization.

Precisely, since the ReLU activation reduces nearly half of the
inputs to zero, therefore the variance of the distribution from
which the initial weights are randomly sampled should be

V ar(w) =

The ReLU aware scaled initialization works better compared to
Xavier initialization for recent architectures which are based on
the ReLU nonlinearity.
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Pre-training

One approach to avoid the gradient diminishing or exploding problem
is to use layer-wise pre-training in an unsupervised fashion.

The unsupervised pre-training can be followed by a supervised
fine-tuning stage to make use of any available annotations.

However, due to the new hyper-parameters, the considerable
amount of effort involved in such an approach and the availability
of better initialization techniques, layer-wise pre-training is
seldomused now to enable the training of CNN-based very deep
networks.

(not a good idea)
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Supervised Pre-Training

In practical scenarios, it is desirable to train very deep networks, but
we do not have a large amount of annotated data available for many
problem settings.

A very successful practice in such cases is to first train the neural
network on a related but different problem, where a large amount
of training data is already available.

Afterward, the learned model can be “adapted” to the new task by
initializing with weights pre-trained on the larger dataset.

 This process is called “fine-tuning” and is a simple, yet
effective, way to transfer learning from one task to another.
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Training and Validation (Test)

The set of data samples are commonly split in two sub-sets:

1. Training data samples only used to compute model errors for
model parameter optimization;

2. Test (or validation) data samples only used to check and assess
the current model accuracy.

For gradient error back-propagation commonly linear error functions
are used. For the validation, higher-order funtions (like MSE) can be
used.
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Regularization

Since deep conv. and neural networks have a large number of
parameters, they tend to over-fit on the training data during the
learning process.

Over-fitting meana that the model performs really well on the
training data but it fails to generalize well to unseen data.
It, therefore, results in an inferior performance on new data
(usually the test set).

 Regularization approaches aim to avoid this problem using
several intuitive ideas.
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Regularization
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We can categorize common regularization approaches into the
following classes, based on their central idea:

approaches which regularize the network using data level techniques (e.g., data
augmentation);
approaches which introduce stochastic behavior in the neural activations (e.g.,
dropout and drop connect);
approaches which aligns parameters of "saturated" nodes to bring the back in the
non-saturation range;
approaches which normalize batch statistics in the feature activations (e.g., batch
normalization);
approaches which use decision level fusion to avoid over-fitting (e.g., ensemble
model averaging);
approaches which introduce constraints on the network weights (e.g., 1 norm,2
norm, max-norm, and elastic net constraints); and
approaches which use guidance from a validation set to halt the learning process
(e.g., early stopping).
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Data Augmentation

Data augmentation is the easiest, and often a very effective way of
enhancing the generalization power of CNN models. Especially for
cases where the number of training examples is relatively low, data
augmentation can enlarge the dataset (by factors of 16x, 32x, 64x, or
even more) to allow a more robust training of large-scale models.

Data augmentation is performed by making several copies from a
single image using straightforward operations such as rotations,
cropping, flipping, scaling, translations, and shearing. These
operations can be performed separately or combined together to
form copies, which are both flipped and cropped.
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[Khan, 2018]

Fig. 7. Examples of data augmentation using image cropping, flipping, and rotation
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Drop Out

One of the most popular approaches for neural network
regularization is the dropout technique.

During network training, each neuron is activated with a fixed
probability (usually 0.5 or set using a validation set).

This random sampling of a sub-network within the full-scale
network introduces an ensemble effect during the testing phase,
where the full network is used to perform prediction.

Activation dropout works really well for regularization purposes
and gives a significant boost in performance on unseen data in
the test phase.
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A random dropout layer generates a mask m ∈ B m, where
each element m i is indepently sampled from a Bernoulli
distribution a probability p being on (or 1-p being off).

This mask is used to modify the output activations from the
previous layer, i.e.:

→al = →m ⊙ f(Ŵ ⋅ →al−1 + →bl)

Here, a ∈ ℝ n and b ∈ ℝm denote the activations and biases
respectively. W ∈ ℝm×n is the weight matrix, and f the transfer
function.
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Ensemble Model Averaging

The ensemble averaging approach is another simple, but effective,
technique where a number of models are learned instead of just a
single model.

Each model has different parameters due to different random
initializations, different hyper-parameter choices (e.g.,
architecture, learning rate) and/or different sets of training inputs.

The output from these multiple models is then combined to
generate a final prediction score.
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Ensemble Model Averaging

The prediction combination approach can be a simple output
averaging, a majority voting scheme or a weighted combination of
all predictions.

The final prediction is more accurate and less prone to over-
fitting compared to each individual model in the ensemble.
The committee of experts (ensemble) acts as an effective
regularization mechanism which enhances the generalization
power of the overall system.
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Early Stopping

The overfitting problem occurs when a model performs verywell on
the training set but behaves poorly on unseen data.

Early stopping is applied to avoid overfitting in the iterative
gradient-based algorithms.

This is achieved by evaluating the performance on a held-out
validation set at different iterations during the training process.

The training algorithm can continue to improve on the training
set until the performance on the validation set also improves.
Once there is a drop in the generalization ability of the learned
model, the learning process can be stopped or slowed down.
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[Khan, 2018]

Fig. 8. An illustration of the early stopping approach during network training using the
validation error for decision making instead a pre-defined training error threshold.
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Gradient-based CNN Learning


The CNN learning process tunes the parameters of the
network such that the input space is correctly mapped to the
output space.

At each training step, the current estimate of the output variables
is matched with the desired output (often termed the “ground-
truth” or the “label space”).
This matching function serves as an objective function during the
CNN training and it is usually called the loss function or the error
function.
The CNN training process involves the optimization of its
parameters such that the loss function is minimized.
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Each iteration which updates the parameters using the complete
training set is called a “training epoch".

Each training iteration at time t using the following parameter update
equation modifies the parameters (same for linear filter mask wieghts
as well as for non-linear neuronal functions):

θt = θt−1 − αδt

δt = ∇θF(θt)
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But in contrast to neuron with fixed input data for a given
data sample, the filter mask of a convolution operation moves
the window over the entire input matrix!

Let's say we have 3x3 image, I, and a 2x2 filter W. Sliding this filter
over the image will produce 2x2 output (no padding).

The for elements of this output would be:

O11 = I11W11 + I12W12 + I21W21 + I22W22

O12 = I12W11 + I13W12 + I22W21 + I23W22

O21 = I21W11 + I22W12 + I31W21 + I32W22

O22 = I22W11 + I23W12 + I32W21 + I33W22
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The next layer can be pooling and then this output can be fed into
a dense layer, after flattening if necessary. For example, if it's
average pooling with 2x2 pool size, we have a single output:

o =

If L is the loss function, then we get:

= [ ]

 The error must be computed and accumulated for all pixels of
the input image!
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Batch Gradient-Descent

Gradient descent algorithms work by computing the gradient of
the objective function with respect to the network parameters,
followed by a parameter update in the direction of the steepest
descent.

The basic version of the gradient descent, termed “batch gradient
descent,” computes this gradient on the entire training set.

It is guaranteed to converge to the global minimum for the
case of convex problems.
For non-convex problems, it can still attain a local minimum.

However, the training sets can be very large in computer vision
problems, and therefore learning via the batch gradient descent
can be prohibitively slow because for each parameter update, it
needs to compute the gradient on the complete training set.
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Stochastic Gradient-Descent


Stochastic Gradient Descent (SGD) performs a parameter
update for each set of input and output that are present in
the training set.

As a result, it converges much faster compared to the batch
gradient descent. Furthermore, it is able to learn in an “online
manner”, where the parameters can be tuned in the presence of
new training examples.
The only problem is that its convergence behavior is usually
unstable, especially for relatively larger learning rates and when
the training datasets contain diverse examples.
When the learning rate is appropriately set, the SGD generally
achieves a similar convergence behavior, compared to the batch
gradient descent, for both the convex and non-convex problems.

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Gradient-based CNN Learning

48 / 56



Gradient Computation

A gradient ∇ can be approximated by small difference terms:

∇ = ≈ =

But such a difference formula tends to be very inaccurate for large
gradients (not known in advance and dynamic). So analytical
differentiation (of a node function) is preferred if possible.

On the other hand, analytically deriving the derivatives of complex
expressions is time-consuming and laborious. Furthermore, it is
necessary to model the layer operation as a closed-form
mathematical expression. However, it provides an accurate value
for the derivative at each point.
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Gradients of functions f can be computed by:

1. Numerical differentation (approximation from samples)

=

2. Analytical differentiation (for simple functions)

3. Symbolic differentation (for complex functions)

4. Programmed differentiation

PD Stefan Bosse - AFEML - Module F: Training and Validation of data-driven Models - Gradient Computation

Δf

Δx

f(x + h) − f(x)

h

50 / 56



Every computer program is implemented using a programming
language, which only supports a set of basic functions (e.g.,
addition, multiplication, exponentiation, logarithm and
trigonometric functions). Automatic differentiation uses this
modular nature of computer pro- grams to break them into
simpler elementary functions. The derivatives of these simple
functions are computed symbolically and the chain rule is then
applied repeatedly to compute any order of derivatives of
complex programs.
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[Khan, 2018]

Fig. 9. Relationships between different differentiation methods
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Summary

Fig. 10. Error backpropagation requires a previous forward computation to get the
error and to compute the errror gradients (Bazaga et al., 2019).
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Understanding CNN by Visualization

Convolutional networks are large-scale models with a huge
number of parameters that are learned in a data driven fashion.

Plotting an error curve and objective function on the training
and validation sets against the training iterations is one way to
track the overall training progress.
However, this approach does not give an insight into the actual
parameters and activa- tions of the CNN layers.
It is often useful to visualize what CNNs have learned during or
after the completion of the training process.

The visualization can be categorized into three types depending
on the network signal that is used to obtain the visualization,
i.e., weights, activations, and gradients.We summarize some of
these three types of visualization methods below
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Relevant Regions (ROIs)

 Visualization of regions which are important for the correct
prediction from a deep network.

This is an iteative method to get either an heatmap of regions to
show their contribution in a classification problem or to mask out
irrelevant regions.
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Fig. 11. (a) The grey regions in input images is sequentially occluded and the output
probability of correct class is plotted as a heat map (blue regions indicate high
importance for correct classification). (b) Segmented regions in an image are occluded
until the minimal image details that are required for correct scene class prediction are
left
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