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Overview


Tiny Machine Learning is a new approach that is being used for data-driven

prediction, classification, and regression on microcontrollers using local sensor

data.
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Overview



Tiny Machine Learning is a new approach that is being used for data-driven

prediction, classification, and regression on microcontrollers using local sensor

data.

But even simple sensor data acquisition, aggregation, and processing is a

challenge in distributed sensor network environments, the IoT, mobile

networks, and other distributed strongly heterogeneous networks.


The goal is to process sensor data locally and derive compressed relevant

information features (e.g., damages, attacks, ...) with final global feature

fusion.

Stefan Bosse - Virtualization of Machine Learning - Overview

4 / 46



Overview


To overcome issues and limitations with software and ML deployment in

strong heterogeneous computer networks, the real-time capable low-resource

Virtual Machine REXAVM is introduced.
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Overview



To overcome issues and limitations with software and ML deployment in

strong heterogeneous computer networks, the real-time capable low-resource

Virtual Machine REXAVM is introduced.

REXA VM provides Virtualization of basic ML operations and models

including but limited to: Decision Trees, ANN, CNN

REXA VM and its ML operations can be deployed on low-resource

microncontrollers like the STM32 ARM Cortex M-series starting with 20 kB

of RAM and 32 kB ROM only!
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Introduction

Fig. 1. Let's start here: A material-integrateable sensor node for damage diagnostics in Fibre-Metal Laminates

using Guided Ultrasonic Waves (STM32 ARM Cortex M0, RFID, ADC) [IMSAS Bremen, B. Lüssem et al.,

2023]
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Host Platforms and Efficiency

Efficiency of data processing is always an important objective to optimize, especially for

material-integrated sensor networks. The efficiency of data processing systems can be

compared by the following normalized performance factor ε:

ϵ =

C: Data processing system's computational power in instructions per second (MIPS)

M: Memory capacity (RAM/ROM) in k Bytes

A: Entire chip area in mm
2

P: Electrical power consumption in mW.
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Host Platforms and Efficiency

Device Chip Area Clock/MIPS Power RAM/ROM ε

Atmel Tiny 20 2.1 mm
2
 (1.55x1.4x0.53

mm)

12 MHz 4 mW 0.1 kB/2 kB 3

ARM Cortex M0 (Smart Dust

2002)

0.1 mm
2 740 kHz 70 mW 4 kB/4 kB 0.84

FreeSclae KL03 (ARM Cortex

M0+)

4 mm
2 48 MHz 3 mW 2 kB/40kB 168

STM32 F103VC M3 ∼10 mm
2 72 MHZ 200

mW

48 kB/256

kB

11

STM32 F103C8 M3 ∼6 mm
2
 (meas.) 48 MHZ 100

mW

20 kB/64 kB 6.7

STM32 L031G6U6 M0+ 0.25 mm
2
 (meas.) 16 MHZ 2 mW 8 kB/32 kB 1280

STM32 L073CZU6 M0+ ∼1 mm
2 16/32 MHZ 5/12

mW

20 kB/192

kB

678/565

Xilinx Spartan 3-500E 9.6 mm
2
 (meas.) 50 MHz 100

mW

45 kB 2.34

Xilinx Spartan 7-S25 ∼50 mm
2 100 MHz 100

mW

202 kB 4
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The Concepts

1. VM with integrated compiler

2. Programs (and ANN models, too) are always delivered in textual format

3. On-the-fly compilation to linear Bytecode (< 600 lines of C code!)

4. No dynamic memory management except by stack operations

5. KISS (< 3000 lines of C code); highly configurable (custom ISA)

6. VM can be directly embedded in IO loops (microcontrollers) cooperating with

other tasks
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VM Architecture
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Memory Model and Instruction Processing
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Fig. 2. Multi-stack Computer with mixed-mode code segment (no heap memory), integrated JIT compiler, and

Bytecode processor (vmloop)
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Instruction Set Architecture

Most ops are zero-operand instructions (single world) operating directly on the

stack(s) or the program counter

With some exceptions the ISA can be freely defined (via code snippets and macro

definitions, discussed in the SDK section)

Zero-operand operations consume one Byte (see next slide)

Most instructions have constant and equal execution times (real-time; run-time

prediction possible)

 But the widely used and well known FORTH programming language will be

used commonly (or any sub-set; there is no real standard)
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FORTH

Reverse Polish Notation (stack language)

"Write once and forget (read never)" issue

But keeps compiler simple (low resources and compilation times)

var x
10 20 + x !
x @ . cr
: vecmean
  0
  100 0 do
    data i cell+ @ +  
  loop
;
vecmean . cr
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Pocket GUW Laboratory

Example of an application using the call-gate interface: A digital oscilloscope

equipped with the REXA VM

Fig. 3. The pocket GUW laboratory only using low-budget and low-quality devices for GUW-based damage

detection in Fibre composite materials. The DSO implements REXA-VM and communicates via an USB

virtCOM port with an external computer. https://arxiv.org/abs/2302.09002v1
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VM Tiny ML

ANN and CNN computations require efficient and generic vector operations

crucial to implement ML on microcontrollers. The REXA VM provides a

core set of vector operations that can be used for the computation of ANN

and CNN models.
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VM Tiny ML

ANN and CNN computations require efficient and generic vector operations

crucial to implement ML on microcontrollers. The REXA VM provides a

core set of vector operations that can be used for the computation of ANN

and CNN models.

Training using classical error back-propagation is currently not supported due

to the requirement of storing a suitable training and test data set on the

device.
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Vector Operations

Only integer arithmetic is supported (adressing low-resource and low-power

microcontrollers)

An ANN (and CNN) consists of two parts:

1. The data, i.e., for parameter, input, and output variables;

2. The structure and functions processing the data.

The ANN can be functionally decomposed into the following vector and matrix

operations assuming integer approximation:

f : Rn → R
p ≈ I

n → I
p, f = g ∘ fl−1∘fl−2∘. . ∘f1,fi(→x) = a(ŵi→x + →bi)

g(→z) =

⎧⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪⎩

z regression

binary classification

multi-classification
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Vector Operations

ANN models can be decomposed in chained vector operations!

Vectors are initialised arrays (model parameters) or initialised arrays (input,

intermediate, and output data)

Vector (array) data is embedded in the Code Segment (no heap!)

   Program            Code Segment 
┌─────────────┐      ┌─────────────┐ 
│ array x 100 │      │ bytecode .. │ 
│ array y 20  │      │             │ 
│ array z { 1 │      │ <array z>   │ 
│  3 4 .. }   │      │             │ 
│ ...         │  =>  ├─────────────┤ 
│ ...         │      │ <array x>   │ 
│ ...         │      │ <array y>   │ 
└─────────────┘      └─────────────┘ 
<array>: [LEN:2][DATA:LEN*WORDSIZE] 

Def. 1. Initialized arrays embedded in-place in code frames and non-initialized arrays stored at the end of the

compiled code frame
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Vector Operations

For ANN and CNN models, a set of scaled vector (array) operations is provided

(commonly W=16 Bits signed integer).

Most vector operations are using 2W arithmetics internally (e.g., 32 Bits) with final

down (or up) scaling of results

Scaling parameters must be computed by a model analyzer

Operation Description

array Create an initialised or unintialised array (vector)

vecscale Scale a vector (negative scale value: division, positive: multiplication)

vecadd vecmul Elementwise vector addition and multiplication

vecfold Folding operation (ANN FC layer for multiple neurons )

vecconv Multi-purpose convolution and pooling operation (CNN)

vecmap Elementwise application of a function (e.g., relu or sigmoid), used for ANNs and CNNs

vecreduce Vector reduction (scalar output), e.g., minimum or maximum search, sum, product
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Activation Functions

There are different transfer (activation) that are used in ANN and CNN modells, mosr

prominent examples are:

Linear function (linear) without x- and y-limits

Logistic or sigmoid function (sigmoid) with y-limit=[-1,1]

Tangents hyperbolic function (tanh) with y-limit=[-1,1]

Rectifying linear unit (relu) with one-side open y-limit=[0,∞)

 The linear and relu functions can be directly implemented with integer

arithmetic without loss of accuracy (except due to integer discretizing).
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Activation Functions

There are different transfer (activation) that are used in ANN and CNN modells, mosr

prominent examples are:

Linear function (linear) without x- and y-limits

Logistic or sigmoid function (sigmoid) with y-limit=[-1,1]

Tangents hyperbolic function (tanh) with y-limit=[-1,1]

Rectifying linear unit (relu) with one-side open y-limit=[0,∞)



The linear and relu functions can be directly implemented with integer

arithmetic without loss of accuracy (except due to integer discretizing).

The highly non-linear sigmoid and tanh functions require an appropriate

approximation by using a hybrid approach using a (compacted) look-up table

(LUT) and interpolation.
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Activation Functions

 Approximation of non-linear functions pose accuracy loss and significant

discretization error

Fig. 4. Relative discretization error of scaled integer LUT-interpolated approximation of the sigmoid function
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Model Data

( Layers: 14,8,2 #neurons:24 )
array input 14
( Layer I )
array wghtsI { 1 1 ... 1 1 }
array biasI  { 1 1 ... 1 1 }
array scaleI { 1 1 ... 1 1 }
array actI 14
( Layer H1 )
array wghtsH1 { 1 1 ... 1 1 }
array scaleH1 { 1 1 ... 1 1 }
array actH1 8
( Layer O )
array wghtsO { 1 1 ... 1 1 }
array biasO  { 1 1 }
array scaleO { 1 1 }
array output 2

Model Computation

( Input data is stored in input )
( Output data is stored in output )
: forward
  ( Layer I )
  input wghtsI actI scaleI vecmul
  actI biasI actI 0 vecadd
  actI actI $ sigmoid 0 vecmap
  ( Layer H1 )
  actI wghtsH1 actH1 scaleH1 vecfold
  actH1 biasH1 actH1 0 vecadd
  actH1 actH1 $ sigmoid 0 vecmap
  ( Layer O )
  actH1 wghtsO output scaleO vecfold
  output biasO output 0 vecadd
  output output $ sigmoid 0 vecmap
;

ANN Template
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Model Data

( Layers: conv,pool,fc )
array input 250
( Layer 1 conv )
array cK0L1 { 1 1 ... 1 1 }
array cK1L1 { 1 1 ... 1 1 }
array cK2L1 { 1 1 ... 1 1 }
array cSL1  { 1 1 1 }
array cOL1 104
( Layer 2 pool )
array pO0L2 12
array pO1L2 12
array pO2L2 12
( Layer 3 fc )
array fW0L3P0 { 1 1 ... 1 1 }
array fW0L3P1 { 1 1 ... 1 1 }
array fW0L3P2 { 1 1 ... 1 1 }
array fW1L3P0 { 1 1 ... 1 1 }
array fW1L3P1 { 1 1 ... 1 1 }
array fW1L3P2 { 1 1 ... 1 1 }
array fAL3 12
array fBL3 { 1 1 }
array fSL3 { 1 1 }
array fOL3 2
array output 2
( Input data is stored in input )
( Output data is stored in output )

Model Computation

: forward
  ( Layer 1 conv )
  ( merged with Layer 2 pool )
  input cK0L1 cOL1 cSL1 0 cell+ @ 50 3 2 2 vecconv
  cOL1 cOL1 $ relu 0 vecmap
  cOL1 256 3 + pO0L2 0 26 -3 2 0 vecconv
  input cK1L1 cOL1 cSL1 1 cell+ @ 50 3 2 2 vecconv
  cOL1 cOL1 $ relu 0 vecmap
  cOL1 256 3 + pO1L2 0 26 -3 2 0 vecconv
  input cK2L1 cOL1 cSL1 2 cell+ @ 50 3 2 2 vecconv
  cOL1 cOL1 $ relu 0 vecmap
  cOL1 256 3 + pO2L2 0 26 -3 2 0 vecconv
  ( Layer 3 fc )
  pO0L2 fW0L3P0 fAL3 0 vecmul
  fAL3 0 12 8 vecreduce
  pO1L2 fW0L3P1 fAL3 0 vecmul
  fAL3 0 12 8 vecreduce
  pO2L2 fW0L3P2 fAL3 0 vecmul
  fAL3 0 12 8  vecreduce
  2+ 2+ fSL3 0 cell+ @ 2ext 2/ 2red sigmoid
  fOL3 0 cell+ !
  pO0L2 fW1L3P0 fAL3 0 vecmul
  fAL3 0 12 8 vecreduce
  pO1L2 fW1L3P1 fAL3 0 vecmul
  fAL3 0 12 8 vecreduce
  pO2L2 fW1L3P2 fAL3 0 vecmul
  fAL3 0 12 8 vecreduce
  2+ 2+ fSL3 1 cell+ @ 2ext 2/ 2red sigmoid
  fOL3 1 cell+ !
;

CNN Template
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Software Development Kit
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Fig. 5. Overview of the overall concept of REXA-VM development (C-SN: C source code snippet, H-SN: C

Header snippet, JS: JavaScript, FTH: Forth VM code definitions, JSON: JavaScript Object Notation, CG:

Code generator, CC: C Compiler, CP: ConPro HLS, SYN: RTL synthesis tool)
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The ISA is defined by a collection of code snippets and macro definitions

There are different implementations for different host platforms (or OS)

There are different implementations for software and hardware VMs

All code and definitions are stored in a simple JSON data-base that can be accessed

by various compiler programs

 Git it here and try out: https://github.com/bsLab/rexavm/
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Use Cases
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Damage Detection with an ANN

In this use-case, aggregated feature variables derived from time-dependent

Ultrasonic signals (Guided Ultrasonic Waves, GUW) from multi-path measurements

were used to predict a damage in a composite materials and to estimate its location.

ANN 
14:8:2

Rectifier 
Low-Pass

Peak Fit 
Max/Pos 
FWHM

STM32

d? dx<ε∧dy<ε 
dx 
dy

Feature 
Norm.

Fig. 6. Multi-path GUW measurement and data processing for damage detection (classification and location

regression)
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Damage Detection with an ANN

1. The feature variables were computed from the signal hull, mainly by analyzing

the first main maximum (position and width).

2. The hull signal was computed using (1) the analytical signal via the Hilbert

transform (using FFT) and (2) by applying a rectifier and low-pass filter. Only

the second method can be implemented on the STM32 microcontroller.

3. Assuming six measuring paths and the two most significant feature variables

normalized peak position and peak height, additionally using a measure

temperature and the base frequency of the pitch signal, the feature vector

consists of 14 variables in total.

4. This scaled feature vector is the input for a simple ANN (three layers, one

hidden, typical layer structure [14,8,2], sigmoid activation functions).

5. The output of the ANN provided an estimation of the x- and y-coordinates of

the damage location (or close to 0 if there is no damage detected). This is a

hybrid classification and regression model. If only classification is required,

one output neuron is sufficient.
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Damage Detection with a CNN

Similar to the previous use-case, single-path Ultrasonic time-dependent measuring

signals are used to predict a damage in a composite material.

A Convolutional Neural Network is used to predict a damage (binary classifier)

Spectrogram-based method representing the frequency space of a time-dependent

signal as an image
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Fig. 7. Single-path GUW measurement and data processing using a CNN for damage detection
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Damage Detection with a CNN

1. A discrete wavelet transform using high- and low-pass filters is used to

decompose the sensor signal into wavelet coefficients (first 5 levels were

chosen).

2. The output of the filters (detail and approximation) are decimated by a factor

of two, retaining only the even samples, since each filter output contains half

of the frequency content, but an equal amount of samples as the input signal.

3. With increasing level the number of data elements decreases by a factor 2. To

provide the output of multiple levels in matrix form, the lower levels are shrink

to the number of elements of the highest level (5).

4. The original signal window contained about 2000 samples, finally providing

only 50 data points for the fifth DWT decomposition layer.

5. All DWT vectors are combined into a 50 × 5 elements matrix, treated as a two-

dimensional spectogram image (Inout for CNN).

6. Model is trained with FP arithmetics (classical error gradient back-

propagation), then transformed to scaled integer model.
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Damage Detection with a CNN

Results

 The original FP arithmetic model showed a classification error of 5%
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Damage Detection with a CNN

Results


The original FP arithmetic model showed a classification error of 5%

The integer-scaled and transformed REXAVM model using the vector ISA

showed a classification error of 5% (same data set)!
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Damage Detection with a CNN

Results


The original FP arithmetic model showed a classification error of 5%

The integer-scaled and transformed REXAVM model using the vector ISA

showed a classification error of 5% (same data set)!


But: Initial transformations only regarding overflow scaling showed underflow

issues and high classifcation errors requiring a re-calibration of the scaling

factors.
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Performance
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VM

1. Compilation (MCPS, Tokens)

2. Bytecode execution (MWPS, Bytecode Instructions)

Target Configuration MIPS MCPS Code/Heap

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=1024, DS=256, RS=128, FS=64,

Words=101

1.1 /

15k/MHz

0.1 /

1.4k/MHz

8/8 kB

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=1024, DS=256, RS=128, FS=64,

Words=64 (no double word arithmetic)

1.1 0.1 7/7 kB

STM32 F103VC3, 72MHz,

256kB ROM, 48kB RAM

CS=4096, DS=1024, RS=256, FS=128,

Words=101

1.1 0.1 8/16 kB

STM32 L031, 16 MHz, 32

kB ROM, 8 kB RAM

CS=1024, DS=256, RS=32, FS=32,

Words=101

0.24 /

15k/MHz

0.02 7.1/8 kB

i5-7300U, 3GHz 4 GB

RAM

CS=16384, DS=4096, RS=1024,

FS=256, Words=101

280 /

90k/MHz

27 /

9k/MHz

32/64 kB
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VM

Highlights

1:70 → About 70 native machine instructions / VM instruction execution

(ARM Cortex) or 1:15 (Intel x86)

1:700 → About 700 native machine instructions / Word compilation (ARM

Cortex) or 1:100 (Intel x86)

Only 13 nJ / VM instruction (ARM Cortex M0+)

Only 130 nJ / Word compilation (ARM Cortex M0+)

Computation times of medium sized ANNs is below 1 Second (ARM Cortex

M0+, 16 MHz, typically in the Milliseconds range)

Compilation times of medium sized programs is below 1 Second (typically in

the Milliseconds range)

Start-up time of VM is below 100 ms (typically in the Milliseconds range)
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Vector Operations (ANN)

Fig. 8. Normalized computation times for ANNs of different size (with two, three, and four layers) and two

different host platforms (Generic i5 x86 @2900 MHz and STM32F103C8 @72MHz) as a function of neurons:

Θ(N)=N
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Vector Operations (ANN)

Fig. 9. Code size of ANN as a function of the number of neurons: Θ(N)=N
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Vector Operaiotns (CNN)

CNN Code Size (Model+Forward Func.)
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Fig. 10. Code size of CNN as a function of the number of cells: Θ(N)=N
2
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Summary



A stack-based virtual machine architecture for low-resource, tiny embedded

systems was introduced and analyzed. The overhead, even on very low-

resource systems, is low with respect to typical running times under energy

constraints and tasks to be performed in real-time
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resource systems, is low with respect to typical running times under energy
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A major feature is the tight coupling of a Text-to-Bytecode compiler with the

Bytecode interpreter, ensuring robustness, security, stability, and

interoperability in strong heterogeneous environments.
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Summary



A stack-based virtual machine architecture for low-resource, tiny embedded

systems was introduced and analyzed. The overhead, even on very low-

resource systems, is low with respect to typical running times under energy

constraints and tasks to be performed in real-time

A major feature is the tight coupling of a Text-to-Bytecode compiler with the

Bytecode interpreter, ensuring robustness, security, stability, and

interoperability in strong heterogeneous environments.

ML classification and regression models can be computed using integer

arithmetic and a set of vector operations with low computation times and

memory requirements.
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